Atender oportunamente la transformación digital acelerada en las organizaciones debido a la pandemia de COVID-19, es posible al profundizar en la perspectiva de sujetos que han experimentado el cambio abrupto en el espacio laboral; por ello comprender su situación actual en relación con el nivel de madurez digital y la competencia de análisis de datos es de suma importancia. Se realizaron encuestas a profesionales con al menos licenciatura, además de otras características demográficas y laborales que permiten advertir la valoración del alcance del cambio tecnológico en su ámbito de trabajo, así como sus propias habilidades en ese contexto organizacional. Los resultados muestran información relevante sobre las dimensiones que plantea Rossman (2019) sobre madurez digital. Los sectores industriales que se encuentran incluidos en el estudio, son ejemplos claros de la industria 4.0 que se ha desarrollado en la Ciudad de México, atrayendo talento de profesionales con preparación de nivel posgrado, haciendo evidente que ciertos perfiles aportan a la evolución de estas organizaciones con mayor velocidad y eficiencia. Los descubrimientos impulsarán la revisión de la estructura curricular adecuada para integrar los conocimientos, habilidades y actitudes que la realidad tecnológica demanda de los profesionales en un contexto en evolución acelerada, donde no basta conocer o utilizar, sino integrar en los distintos campos profesionales las herramientas y las estrategias que fortalezcan el sector productivo y social.
To timely address the accelerated digital transformation in organizations due to the COVID19 pandemic, it is possible to gain insight into the perspective of subjects who have experienced the abrupt change in the workplace; therefore, understanding their current situation in relation to the level of digital maturity and data analysis competence is of utmost importance. Surveys were conducted among professionals with at least a graduate degree, in addition to other demographic and work characteristics that allow us to note their assessment of the scope of technological change in their work environment, as well as their skills in this organizational context. The results show relevant information on the dimensions raised by Rossman (2019) on digital maturity. The industrial sectors included in the study are clear examples of the Industry 4.0 that has developed in Mexico City, attracting talent of professionals with preparation to postgraduate level, making it evident that certain profiles contribute to the evolution of these organizations with greater speed and efficiency. The discoveries will drive the revision of the appropriate curricular structure to integrate the knowledge, skills and attitudes that the technological reality demands from professionals in a context in accelerated evolution, where it is not enough to know or use, but to integrate in the different professional fields the knowledge, skills and attitudes that the technological reality demands from professionals in a context in accelerated evolution, where it is not enough to know or use, but to integrate in the different professional fields.
Andreas Schumacher, A., Erol, S. & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP. 52. 161 - 166.
Awasthi A. & Grzybowska, K. (2021). Evaluation of Key Skills Supporting Industry. A Review of Literature and Practice. Research Gate. https://www.researchgate.net/publication/337690133_Evaluation_of_Key_Skills_Supporting_Industry_40-A_Review_of_Literature_and_Practice
Barthel, P., & Hess, T. (2020). Towards a characterization of digitalization projects in the context of organizational transformation. Pacific Asia Journal of the Association for Information Systems, 12(3), 31-56. https://doi.org/10.17705/1pais.12302
Blanc, R., Pietroboni, R. & Hegglin, D. (2020). Modelos de madurez en la Industria 4.0 y su aplicación en la costa del Río Uruguay. Congreso Argentino Internacional de Ingeniería Industrial.
Çallı, B. A. & Çallı, L. (2021). Relationships between digital maturity, organizational agility, and firm performance: An empirical investigation on SMEs. Business &Amp. Management Studies: An International Journal. 9. (2), 486–502. https://doi.org/10.15295/bmij.v9i2.1786
Chanias, S. & Hess, T. (2016). How digital are we? Maturity models for the assessment of a company’s status in the digital transformation. company’s status in the digital transformation. Institute for Information Systems and New Media.
Colli, M. Madsen, O., Berger, U., Møller, C., Wæhrens, B., Vejrum & Bockholt, M. (2018). Contextualizing the outcome of a maturity assessment for Industry 4.0. IFAC PapersOnLine 51. (11). 1347 - 1352. https://doi.org/10.1016/j.ifacol.2018.08.343
Department of Business Studies Uppsala University. (10 august 2021). Digital Competencies and Data Literacy in Digital Transformations: Experience from the Technology Consultants. Uppsala University.
Felch, V., Asdecker, B. & Sucky, E. (8 January 2019). Maturity Models in the Age of Industry 4.0 – Do the Available Models Correspond to the Needs of Business Practice?. 52nd Hawaii International Conference on System Sciences. 5165 - 5174. https://scholarspace.manoa.hawaii.edu/items/2cd31ccf-d430-493d-87e2-1c0430596702
Ghasemaghaei, M., Ebrahimi, S. & Hassanein, K. (March 2018). Data analytics competency for improving firm decision making performance. The Journal of Strategic Information Systems. 27. (1). 101 - 113. https://www.sciencedirect.com/science/article/abs/pii/S0963868717300768?via%3Dihub
Ghasemaghaei, M., Hassaneina, K. & Turelb, O. (September 2017). Increasing firm agility through the use of data analytics: The role of fit. Decision Support Systems. 101. 95-105. https://www.sciencedirect.com/science/article/abs/pii/S0167923617301161?via%3Dihub
Ghasemaghaei, M. (2018) Improving Organizational Performance Through the Use of Big Data. Journal of Computer Information Systems. 60. (5). 395 - 408. https://www.tandfonline.com/doi/abs/10.1080/08874417.2018.1496805?journalCode=ucis20
Global Working Group on Big Data for Official Statistics. Competency Framework for big data acquisition and processing.
Goldie, J. G. S. (2016) Connectivism: a knowledge learning theory for the digital age? Medical Teacher, 38(10), pp. 1064-1069. https://doi.org/10.3109/0142159X.2016.1173661
Grzybowska, K. & Lupika, A. (2017). Key competencies for Industry, Economics & Management Innovations, 1(1) :250-253. https://www.researchgate.net/publication/322981337_Key_competencies_for_Industry_40
Guevara Patiño, R. (2016). El estado del arte en la investigación: ¿análisis de los conocimientos acumulados o indagación por nuevos sentidos?. Universidad Pedagógica Nacional. 165 - 179.
Guil Bozal, M. (2006). Escala mixta Likert-Thurtstone. Revista Andaluza de Ciencias Sociales. (5). 81 - 95.
Guzman E, V., Muschardb, B., Gerolamoa, M., Kohlb, H., Rozenfelda, H. (2020). Characteristics and Skills of Leadership in the Context of Industry. Procedia Manufacturing, 543–550. https://www.journals.elsevier.com/procedia-manufacturing
Hernández de Menendez, M., Morales Menendez, R., Escobar, E. & McGovern, M. (2 November 2020). Competencies for Industry 4.0. International Journal on Interactive Design and Manufacturing. 1511 - 1524 https://www.researchgate.net/publication/345969744_Competencies_for_Industry_40
Himmetoglu B., Aydug, D. & Bayrak, C. (July 2020). Education 4.0: defining the teacher, the student, and the school manager aspect of revolution. Turkish Online Journal of Distance Education. 12-26
Instituto Nacional de Estadística y Geografía (2016), Estadísticas a propósito de la industria farmacéutica, 7, 9.
Janis I. & Alias, M. (18 December 2019). A Systematic Literature Review: Human Roles, Competencies And Skills In Industry 4.0. European Proceedings. 40. (1st Edition). 1 - 1231. https://doi.org/10.15405/epsbs.2018.05.84
Johnson, M., Albizri, A. & Jain, R. (January 2020). Exploratory Analysis to Identify Concepts, Skills, Knowledge, and Tools to Educate Business Analytics Practitioners. Decision Sciences Journal of Innovative Education. 18. (1)
Kane, G., Palmer, D., Anh Nguyen Phillips, A. N., Kiron, D. & Buckley, N.(2017). Achieving Digital Maturity Adapting Your Company to a Changing World. ed. 59180. Deloitte University Press.
Klee, S., Janson, A. & Leimeister, J. (2021). How Data Analytics Competencies Can Foster Business Value– A Systematic Review and Way Forward. Information Systems Management. 32. (3). 200-217. https://www.tandfonline.com/doi/full/10.1080/10580530.2021.1894515
Klopp M. & Abke, J.(december 2018). 4.0 A conceptual disscution. International Conference on Teaching, Assessment, and Learning for Engineering. (871 - 875).
Korherr, P., & Kanbach, D. (2021). Human-related capabilities in big data analytics: a taxonomy of human factors with impact on firm performance. Review of Managerial Science, 1-28
Lanzetta , D. y Malegaríe, J. (2013). Iniciándonos en el mundo de la investigación. UBA Sociales, Facultad de ciencias sociales.
Lara Hormigo, A. (2014). Introducción a las ecuaciones estructurales en AMOS y R. Lara Hormigo, A.
Leitão, P., Geraldes, C. A., Fernandes, F. P., & Badikyan, H. (2020, June). Analysis of the workforce skills for the factories of the future. In 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS) (Vol. 1, pp. 353-358). IEEE.
Liu, Q., Zhao, Y., Kamioka, T., & Nakamur, M. (2021). Digital Transformation Challenges in the Sales of Pharmaceutical Companies in Japan. Asian Journal of Business Research.
Martínez, E., Carrasco, C. y Bull, M. (2018). Propuesta metodológica para implementar la primera fase del modelo de gestión del cambio organizacional de Lewin. Estudios Gerenciales, 34(146), 88-98. https://doi.org/10.18046/j.estger.2018.146.2813
Mendívil, L., Sánchez, A., Cabrera, L. y Bustamante, G. (2021). Estado del arte: Guia académico para la investigación. Pontificia Universidad Católica del Perú: Facultad de Educación.
Mendizábal, G. y Escalante, A. (2021). El reto de la educación 4.0: competencias laborales para el trabajo emergente por la covid-19. Revista Iberoamericana de Ciencias Sociales y Humanísticas. 10. (19).
Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management. 57. (2). https://www.sciencedirect.com/science/article/pii/S0378720618301022?via%3Dihub
Mikalef, P. & Krogstie, J. (April, 2019). Investigating the Data Science Skill Gap An Empirical Analysis. Global Engineering Education Conference (EDUCON). 2019. 1275-12Mikalef84.
Mikalef, P., van de Wetering, R., & Krogstie, J. (2021) Building dynamic capabilities by leveraging big data analytics: The role of organizational inertia. Information & Management. 58. (6). https://www.sciencedirect.com/science/article/pii/S0378720620303505?via%3Dihub
Mohajan, H. (2020). Quantitative Research: A Successful Investigation in Natural and Social Sciences. Journal of Economic Development, Environment and People. 9. (4). 52 - 79.
Müller, O. & Brocke, J. (October 2014). Comparing Business Intelligence and Big Data Skills. Business & Information Systems Engineering 6. (5). 289-300. https://www.researchgate.net/publication/271914680_Comparing_Business_Intelligence_and_Big_Data_Skills
Musa, J., Badd, j. & Abdullat, A. (september 2017). Emergence of Data Analytics in the Information Systems Curriculum. Information Systems Education Journal. 15. (5). 22 - 36.
Oberer B. & Elkollar, A. (15 november 2018). Leadership 4.0: Digital Leaders in the Age of Industry 4.0. International journal of organizational leadership.
Nguyen, A., Lamouri, S., Pellerin, R., Tamayo, S. & Lekens, B. (2021). Data analytics in pharmaceutical supply chains: state of the art, opportunities, and challenges. International Journal of Production Research.
Ostmeier, E. & Strobel, M. (2022). Building skills in the context of digital transformation: How industry digital maturity drives proactive skill development. Journal of Business Research. 139. 718 - 730. https://www.sciencedirect.com/science/article/abs/pii/S0148296321006652?via%3Dihub
Pérez, E., Medrano, L. A. y Sánchez Rosas, J. (2013). El Path Analysis: conceptos básicos y ejemplos de aplicación. Revista Argentina de Ciencias del Comportamiento. 5. (1). 52 - 66.
Persaud, A. (2021), "Key competencies for big data analytics professions: a multimethod study", Information Technology & People. 34. (1). 178-203. https://doi.org/10.1108/ITP-06-2019-0290
Pierin Ramosa, L. F., Rocha Louresa, E. & Deschampsa, F. (2020). An Analysis of Maturity Models and Current State Assessment of Organizations for Industry 4.0 Implementation. Procedia Manufacturing. 51. 1098 - 1105.
Reinhard, I., Oliveira, J. & Ring, D. (June 2020). Current Perspectives on the Development of Industry 4.0 in the Pharmaceutical Sector. Journal of Industrial Information Integration. 18. https://www.sciencedirect.com/science/article/pii/S2452414X20300066?via%3Dihub
Reséndiz Prado, B., Torres-Mansur, S., Placeres-Salinas, S. (diciembre 2020). ¿Cómo reinvertarse para s er competitivos en la Industria 4.0?. Vinculatégica. 7. (2). https://vinculategica.uanl.mx/index.php/v/issue/view/1
Ricoy Lorenzo, C. (2006). Contribución sobre los paradigmas de investigación Educação. Revista do Centro de Educação. 31. (1). 11 - 22. https://www.redalyc.org/articulo.oa?id=117117257002
Rossmann, A. (January 2019). Digital Maturity: Conceptualization and Measurement Model. 39th International Conference on Information Systems. 2. https://www.researchgate.net/publication/345760193_Digital_Maturity_Conceptualization_and_Measurement_Model
Sangari, M. & Razmi, J.(2015). Business intelligence competence, agile capabilities, and agile performance in supply chain. The International Journal of Logistics Management. 26. (2). 356 - 380. https://www.emerald.com/insight/content/doi/10.1108/IJLM-01-2013-0012/full/html
Schumacher, A., Erol, S. & Sihn, Wilfried. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP. 52. 161-166. 10.1016/j.procir.2016.07.040.
Spirtes, P., Thomas Richardson, T., Meek, C., Scheines, R. & Glymour, C. (1999) Using Path Diagrams as a Structural Equation Modelling Tool. Spirtes, P.
Tippins, M. & Sohi, R. S. (2003). IT Competency and Firm Performance: Is Organizational Learning a Missing Link?. Marketing Department Faculty Publications. https://digitalcommons.unl.edu/marketingfacpub/23/?utm_source=digitalcommons.unl.edu%2Fmarketingfacpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
Varnavskiy, A., Volokova, E. S., Gruzina, Y. M., Buryakova, A. O. & Klomova, E. (2020). Assessing digital maturity of organizations. Revista Espacios. 41. (12).
Weibl, J., & Hess, T. (2018). Success or Failure of Big Data : Insights of Managerial Challenges from a Technology Assimilation Perspective. Multikonferenz Wirtschaftsinformatik.
Wiggins, G., & McTighe, J. (2005) Understanding by design (2nd ed.). Alexandria, VA: Association for Supervision and Curriculum Development ASCD. Colombian Applied Linguistics Journal. 19. 140. 10.14483/calj.v19n1.11490
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.
Internacionalista con maestría en Mercadotecnia con 22 de experiencia profesional. Ha desarrollado su práctica docente en diversas instituciones particulares de nivel superior y contribuido en procesos de acreditación de la calidad institucional, así como consultora enfocada en empresas familiares en temas estratégicos y comerciales.
Candidata a doctora en la Universidad Rosario Castellanos en el programa de Ambientes y Sistemas Educativos Multimodales. Su énfasis de investigación se encuentra en la transformación digital e innovación educativa. Actualmente coordina el Centro de Investigación de la Universidad Del Pedregal en la Ciudad de México.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.